

January 2007 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme		Marks
1.	** represents a constant $f(x) = (2 - 5x)^{-2} = (2)^{-2} \left(1 - \frac{5x}{2}\right)^{-2} = \frac{1}{4} \left(1 - \frac{5x}{2}\right)^{-2}$	Takes 2 outside the bracket to give any of $(2)^{-2}$ or $\frac{1}{4}$.	B1
	$=\frac{1}{4}\left\{ \frac{1+(-2)(^{*}*x);+\frac{(-2)(-3)}{2!}(^{*}*x)^{2}+\frac{(-2)(-3)(-4)}{3!}(^{*}*x)^{3}+}{3!} \right\}$	Expands $(1+**x)^{-2}$ to give an unsimplified 1+(-2)(**x);	M1
		A correct unsimplified {} expansion with candidate's (**x)	A1
	$=\frac{1}{4}\left\{ \frac{1+(-2)(\frac{-5x}{2});+\frac{(-2)(-3)}{2!}(\frac{-5x}{2})^2+\frac{(-2)(-3)(-4)}{3!}(\frac{-5x}{2})^3+\ldots \right\}$		
	$= \frac{1}{4} \left\{ 1 + 5x; + \frac{75x^2}{4} + \frac{125x^3}{2} + \dots \right\}$		
	$=\frac{1}{4}+\frac{5x}{4};+\frac{75x^2}{16}+\frac{125x^3}{8}+$	Anything that cancels to $\frac{1}{4} + \frac{5x}{4}$; Simplified $\frac{75x^2}{16} + \frac{125x^3}{8}$	A1;
	$= \frac{1}{4} + 1\frac{1}{4}x; + 4\frac{11}{16}x^2 + 15\frac{5}{8}x^3 + \dots$		[:
			5 mark

Question Number	Scheme	Marks
Aliter 1.	$f(x) = (2 - 5x)^{-2}$	
Way 2	$= \begin{cases} (2)^{-2} + (-2)(2)^{-3}(**x); + \frac{(-2)(-3)}{2!}(2)^{-4}(**x)^2 \\ + \frac{(-2)(-3)(-4)}{3!}(2)^{-5}(**x)^3 + \dots \end{cases}$ Expands $(2-5x)^{-2}$ to give an unsimplified $(2)^{-2} + (-2)(2)^{-3}(**x);$ A correct unsimplified $\{\dots,\dots\}$ expansion	B1 M1
	with candidate's	711
	$= \begin{cases} \frac{1}{4} + (-2)(\frac{1}{8})(-5x); + (3)(\frac{1}{16})(25x^{2}) \\ + (-4)(\frac{1}{16})(-125x^{3}) + \dots \end{cases}$ Anything that $= \frac{1}{4} + \frac{5x}{4}; + \frac{75x^{2}}{16} + \frac{125x^{3}}{8} + \dots$ $= \frac{1}{4} + 1\frac{1}{4}x; + 4\frac{11}{16}x^{2} + 15\frac{5}{8}x^{3} + \dots$ Simplified $\frac{75x^{2}}{16} + \frac{125x^{3}}{8}$	A1; A1
	4 4 10 8	[5] 5 marks

Attempts using Maclaurin expansions need to be referred to your team leader.

Question Number	Scheme		Marks
2. (a)	Volume = $\pi \int_{\frac{-1}{4}}^{\frac{1}{2}} \left(\frac{1}{3(1+2x)} \right)^2 dx = \frac{\pi}{9} \int_{\frac{-1}{4}}^{\frac{1}{2}} \frac{1}{(1+2x)^2} dx$	Use of $V = \underline{\pi \int y^2} dx$. Can be implied. Ignore limits.	B1
	$= \left(\frac{\pi}{9}\right) \int_{-\frac{1}{4}}^{\frac{1}{2}} \left(1 + 2x\right)^{-2} dx$	Moving their power to the top. (Do not allow power of -1.) Can be implied. Ignore limits and $\frac{\pi}{9}$	M1
	$= \left(\frac{\pi}{9}\right) \left[\frac{(1+2x)^{-1}}{(-1)(2)}\right]_{-\frac{1}{4}}^{\frac{1}{2}}$	Integrating to give $\frac{\pm p(1+2x)^{-1}}{-\frac{1}{2}(1+2x)^{-1}}$	M1 A1
	$= \left(\frac{\pi}{9}\right) \left[-\frac{1}{2} (1+2x)^{-1} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$		
	$= \left(\frac{\pi}{9}\right) \left[\left(\frac{-1}{2(2)}\right) - \left(\frac{-1}{2(\frac{1}{2})}\right)\right]$		
	$=\left(\frac{\pi}{9}\right)\left[-\frac{1}{4}-(-1)\right]$		
	$=\frac{\pi}{12}$	Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef	A1 aef
(b)	From Fig.1, AB = $\frac{1}{2} - \left(-\frac{1}{4}\right) = \frac{3}{4}$ units		[5]
	As $\frac{3}{4}$ units \equiv 3cm		
	then scale factor $k = \frac{3}{\left(\frac{3}{4}\right)} = 4$.		
	Hence Volume of paperweight = $(4)^3 \left(\frac{\pi}{12}\right)$	$(4)^3 \times (\text{their answer to part (a)})$	M1
	$V = \frac{16\pi}{3} \text{ cm}^3 = 16.75516 \text{ cm}^3$	$\frac{\frac{16\pi}{3}}{\text{or } \frac{64\pi}{12}} \text{ or aef}$	A1 [2]
			7 marks

Note: $\frac{\pi}{9}$ (or implied) is not needed for the middle three marks of question 2(a).

		CUCAC	
Question Number	Scheme		Marks
Aliter 2. (a)	Volume = $\pi \int_{\frac{-1}{4}}^{\frac{1}{2}} \left(\frac{1}{3(1+2x)} \right)^2 dx = \pi \int_{\frac{-1}{4}}^{\frac{1}{2}} \frac{1}{(3+6x)^2} dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	B1
Way 2	$= (\pi) \int_{-\frac{1}{4}}^{\frac{1}{2}} (3+6x)^{-2} dx$	Moving their power to the top. (Do not allow power of -1.) Can be implied. Ignore limits and π	M1
	$= (\pi) \left[\frac{(3+6x)^{-1}}{(-1)(6)} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$	Integrating to give $\frac{\pm p(3+6x)^{-1}}{-\frac{1}{6}(3+6x)^{-1}}$	M1 A1
	$= \left(\pi\right) \left[\begin{array}{c} -\frac{1}{6} (3+6x)^{-1} \end{array} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$		
	$= \left(\pi\right) \left[\left(\frac{-1}{6(6)}\right) - \left(\frac{-1}{6(\frac{3}{2})}\right) \right]$		
	$= \left(\pi\right) \left[-\frac{1}{36} - \left(-\frac{1}{9}\right) \right]$		
	$=\frac{\pi}{12}$	Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef	A1 aef [5]
			[0]

Note: π is not needed for the middle three marks of question 2(a).

Question Number	Scheme		Marks
3. (a)	$x = 7\cos t - \cos 7t \; , y = 7\sin t - \sin 7t \; ,$	Attempt to differentiate x and y with respect to t to give	
	$\frac{dx}{dt} = -7\sin t + 7\sin 7t, \frac{dy}{dt} = 7\cos t - 7\cos 7t$	$\frac{dx}{dt} \text{ in the form } \pm A \sin t \pm B \sin 7t$ $\frac{dy}{dt} \text{ in the form } \pm C \cos t \pm D \cos 7t$	M1
		Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
	$\therefore \frac{dy}{dx} = \frac{7\cos t - 7\cos 7t}{-7\sin t + 7\sin 7t}$	Candidate's $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	B1 √ [3]
(b)	When $t = \frac{\pi}{6}$, $m(T) = \frac{dy}{dx} = \frac{7\cos\frac{\pi}{6} - 7\cos\frac{7\pi}{6}}{-7\sin\frac{\pi}{6} + 7\sin\frac{7\pi}{6}}$;	Substitutes $t = \frac{\pi}{6}$ or 30° into their $\frac{dy}{dx}$ expression;	M1
	$= \frac{\frac{7\sqrt{3}}{2} - \left(-\frac{7\sqrt{3}}{2}\right)}{\frac{-\frac{7}{2} - \frac{7}{2}}{2}} = \frac{7\sqrt{3}}{\frac{-7}{2}} = \frac{-\sqrt{3}}{2} = \underbrace{-awrt - 1.73}$	to give any of the four underlined expressions oe (must be correct solution only)	A1 cso
	Hence $m(\mathbf{N}) = \frac{-1}{-\sqrt{3}}$ or $\frac{1}{\sqrt{3}} = \text{awrt } 0.58$	Uses m(T) to 'correctly' find m(N). Can be ft from "their tangent gradient".	A1√ oe.
	When $t = \frac{\pi}{6}$, $x = 7\cos\frac{\pi}{6} - \cos\frac{7\pi}{6} = \frac{7\sqrt{3}}{2} - \left(-\frac{\sqrt{3}}{2}\right) = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$ $y = 7\sin\frac{\pi}{6} - \sin\frac{7\pi}{6} = \frac{7}{2} - \left(-\frac{1}{2}\right) = \frac{8}{2} = 4$	The point $(4\sqrt{3}, 4)$ or $(awrt 6.9, 4)$	B1
	N : $y-4=\frac{1}{\sqrt{3}}(x-4\sqrt{3})$	Finding an equation of a normal with their point and their normal gradient or finds c by using y = (their gradient)x + "c".	M1
	N: $\underline{y = \frac{1}{\sqrt{3}}x}$ or $\underline{y = \frac{\sqrt{3}}{3}x}$ or $\underline{3y = \sqrt{3}x}$	Correct simplified EXACT equation of <u>normal</u> . This is dependent on candidate using correct $(4\sqrt{3}, 4)$	<u>A1</u> oe
	or $4 = \frac{1}{\sqrt{3}} (4\sqrt{3}) + c \implies c = 4 - 4 = 0$		
	Hence N: $\underline{y = \frac{1}{\sqrt{3}}x}$ or $\underline{y = \frac{\sqrt{3}}{3}x}$ or $\underline{3y = \sqrt{3}x}$		
			[6] 9 marks

Question	Scheme	COCAC	Marks
Number Aliter			
3. (a)	$x = 7\cos t - \cos 7t$, $y = 7\sin t - \sin 7t$,		
Way 2	dx dv	Attempt to differentiate x and y with respect to t to give $\frac{dx}{dt}$ in the form $\pm A \sin t \pm B \sin 7t$	M1
	$\frac{dx}{dt} = -7 \sin t + 7 \sin 7t$, $\frac{dy}{dt} = 7 \cos t - 7 \cos 7t$		
		$\frac{dy}{dt}$ in the form $\pm C \cos t \pm D \cos 7t$ Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
		Correct dit and dt	711
	$\frac{dy}{dx} = \frac{7\cos t - 7\cos 7t}{-7\sin t + 7\sin 7t} = \frac{-7(-2\sin 4t\sin 3t)}{-7(2\cos 4t\sin 3t)} = \tan 4t$	Candidate's $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	B1 √ [3]
			اوا
(b)	π dy 1-1-47	Substitutes $t = \frac{\pi}{6}$ or 30° into their	
	When $t = \frac{\pi}{6}$, $m(T) = \frac{dy}{dx} = \tan \frac{4\pi}{6}$;	$\frac{dy}{dx}$ expression;	M1
	3 (√3)(4)	4	
	$=\frac{2\left(\frac{\sqrt{3}}{2}\right)(1)}{2\left(-\frac{1}{2}\right)(1)}=\frac{-\sqrt{3}}{2}=\frac{\text{awrt }-1.73}{2}$	to give any of the three underlined expressions oe	A1 cso
	$\frac{2\left(-\frac{7}{2}\right)\left(1\right)}{2}$	(must be correct solution only)	
		H (T) 4- (41-2 find	
	Hence $m(\mathbf{N}) = \frac{-1}{-\sqrt{3}}$ or $\frac{1}{\sqrt{3}}$ = awrt 0.58	Uses m(T) to 'correctly' find m(N). Can be ft from "their	A1√ oe.
	$-\sqrt{3}$ $\sqrt{3}$	tangent gradient".	·
	When $t = \frac{\pi}{6}$,		
	$x = 7\cos\frac{\pi}{6} - \cos\frac{7\pi}{6} = \frac{7\sqrt{3}}{2} - \left(-\frac{\sqrt{3}}{2}\right) = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$	The point $(4\sqrt{3}, 4)$ or (awrt 6.9, 4)	B1
	$y = 7\sin\frac{\pi}{6} - \sin\frac{7\pi}{6} = \frac{7}{2} - \left(-\frac{1}{2}\right) = \frac{8}{2} = 4$	or(awrt 6.9, 4)	Di
		Finding an equation of a normal	
	N: $y-4=\frac{1}{\sqrt{3}}(x-4\sqrt{3})$	with their point and their normal gradient or finds c by using	M1
	• • •	y = (their gradient)x + "c".	
		Correct simplified EXACT equation of <u>normal</u> .	<u>A1</u> oe
	N: $y = \frac{1}{\sqrt{3}}x$ or $y = \frac{\sqrt{3}}{3}x$ or $y = \sqrt{3}x$	This is dependent on candidate	
		using correct $(4\sqrt{3}, 4)$	
	or $4 = \frac{1}{\sqrt{3}} (4\sqrt{3}) + c \implies c = 4 - 4 = 0$		
	Honor New 1 v am v $\sqrt{3}$ v am 2v $\sqrt{3}$		
	Hence N: $y = \frac{1}{\sqrt{3}}x$ or $y = \frac{\sqrt{3}}{3}x$ or $3y = \sqrt{3}x$		[6]
			[6]
			9 marks

Beware: A candidate finding an m(T) = 0 can obtain A1ft for m(N) $\rightarrow \infty$, but obtains M0 if they write $y-4=\infty(x-4\sqrt{3})$. If they write, however, N: $x=4\sqrt{3}$, then they can score M1.

Beware: A candidate finding an $m(T) = \infty$ can obtain A1ft for m(N) = 0, and also obtains M1 if they write $y - 4 = 0(x - 4\sqrt{3})$ or y = 4.

Question Number	Scheme		Marks
4. (a)	$\frac{2x-1}{(x-1)(2x-3)} \equiv \frac{A}{(x-1)} + \frac{B}{(2x-3)}$		
	$2x-1 \equiv A(2x-3)+B(x-1)$	Forming this identity. NB : A & B are not assigned in this question	M1
	Let $x = \frac{3}{2}$, $2 = B\left(\frac{1}{2}\right) \Rightarrow B = 4$ Let $x = 1$, $1 = A\left(-1\right) \Rightarrow A = -1$	either one of $A = -1$ or $B = 4$. both correct for their A, B.	A1 A1
	giving $\frac{-1}{(x-1)} + \frac{4}{(2x-3)}$		[3]
(b) & (c)	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$	Separates variables as shown Can be implied	B1
	$= \int \frac{-1}{(x-1)} + \frac{4}{(2x-3)} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	$\therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1 √ A1 [5]
	$y = 10, x = 2$ gives $c = \ln 10$	c = In10	B1
	$\therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + \ln 10$		
	$\ln y = -\ln(x-1) + \ln(2x-3)^2 + \ln 10$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(2x-3)^2}{(x-1)} \right) + \ln 10 \text{or}$ $\ln y = \ln \left(\frac{10(2x-3)^2}{(x-1)} \right)$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c.	M1
	$y = \frac{10(2x-3)^2}{(x-1)}$	$y = \frac{10(2x-3)^2}{(x-1)}$ or aef. isw	
			[4]
			12 marks

Question Number	Scheme		Marks
4. (b) & (c) Way 2	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$	Separates variables as shown Can be implied	B1
way 2	$= \int \frac{-1}{(x-1)} + \frac{4}{(2x-3)} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	∴ $\ln y = -\ln(x-1) + 2\ln(2x-3) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1√ A1
	See below for the award of B1	decide to award B1 here!!	B1
	$ln y = -ln(x-1) + ln(2x-3)^2 + c$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(2x-3)^2}{x-1} \right) + c$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c.	M1
	$ln y = ln \left(\frac{A(2x-3)^2}{x-1} \right) \qquad \text{where } c = ln A$		
	or $e^{lny} = e^{ln\left(\frac{(2x-3)^2}{x-1}\right) + c} = e^{ln\left(\frac{(2x-3)^2}{x-1}\right)} e^c$		
	$y = \frac{A(2x-3)^2}{(x-1)}$		
	y = 10, x = 2 gives $A = 10$	A = 10 for $B1$	award above
	$y = \frac{10(2x-3)^2}{(x-1)}$	$y = \frac{10(2x-3)^2}{(x-1)}$ or aef & isw	A1 aef
			[5] & [4]

Note: The B1 mark (part (c)) should be awarded in the same place on ePEN as in the Way 1 approach.

Question Number	Scheme		Marks
	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$	Separates variables as shown Can be implied	B1
Way 3	$= \int \frac{-1}{(x-1)} + \frac{2}{(x-\frac{3}{2})} dx$	Replaces RHS with their partial fraction to be integrated.	M1 √
	$\therefore \ln y = -\ln(x-1) + 2\ln(x-\frac{3}{2}) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1 √ A1 [5]
	y = 10, x = 2 gives $c = \frac{\ln 10 - 2 \ln \left(\frac{1}{2}\right)}{\ln 40}$	$c = \ln 10 - 2\ln\left(\frac{1}{2}\right) \text{ or } c = \ln 40$	B1 oe
	$\therefore \ln y = -\ln(x-1) + 2\ln(x-\frac{3}{2}) + \ln 40$		
	$\ln y = -\ln(x-1) + \ln(x-\frac{3}{2})^2 + \ln 10$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(x - \frac{3}{2})^2}{(x - 1)} \right) + \ln 40 \text{ or}$ $\ln y = \ln \left(\frac{40 (x - \frac{3}{2})^2}{(x - 1)} \right)$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c.	M1
	$y = \frac{40(x - \frac{3}{2})^2}{(x - 1)}$	$y = \frac{40(x - \frac{3}{2})^2}{(x - 1)}$ or aef. isw	A1 aef [4]

Note: Please mark parts (b) and (c) together for any of the three ways.

Candidate realises that they need to solve 'their numerator' = 0or candidate sets $\frac{dy}{dx} = 0$ in their (eqn #) and attempts to solve the resulting equation. giving $x = -\frac{\pi}{2}$ or $x = \frac{\pi}{2}$ $x = \frac{\pi}{2}$ When $x = -\frac{\pi}{2}$, $\sin(-\frac{\pi}{2}) + \cos y = 0.5$ When $x = \frac{\pi}{2}$, $\sin(\frac{\pi}{2}) + \cos y = 0.5$ Substitutes either their $x = \frac{\pi}{2}$ or $x = -\frac{\pi}{2}$ into eqn * $x = \frac{\pi}{2} \text{ or } x = -\frac{\pi}{2} \text{ into eqn *}$ M1 $x = \frac{\pi}{2} \text{ or } x = -\frac{\pi}{2} \text{ into eqn *}$ Only one of $y = \frac{2\pi}{3}$ or $\frac{-2\pi}{3}$ or $\frac{120^{\circ}}{3}$ $x = -\frac{\pi}{3} \text{ or } \frac{120^{\circ}}{3} or$	Question Number	Scheme		Marks
$\begin{cases} \frac{dy}{dx} \times \begin{cases} \cos x - \sin y \frac{dy}{dx} = 0 & (\operatorname{cqn}\#) \\ \frac{dy}{dx} = \frac{\cos x}{\sin y} \end{cases} & \lim \begin{cases} \frac{dy}{dx} \cdot (\operatorname{Ignore}\left(\frac{dy}{dx} = \right).) \end{cases} & \text{A1 } \cos \theta \end{cases} $ $(b) \qquad \begin{cases} \frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0 \end{cases} & \lim \begin{cases} \frac{\cos x}{\sin y} & -\frac{\pi}{3} & (\operatorname{Ignore}\left(\frac{dy}{dx} = \right).) \end{cases} & \lim \begin{cases} \frac{dy}{dx} - (\operatorname{Ignore}\left(\frac{dy}{dx} = \right).) \end{cases} & \text{A1 } \cos \theta \end{cases} $ $(c) \qquad \begin{cases} \frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0 \end{cases} & \lim \begin{cases} \frac{\cos x}{\sin y} & -\frac{\pi}{3} & (\operatorname{Ignore}\left(\frac{dy}{dx} = \right).) \end{cases} & \text{A1 } \cos \theta \end{cases} $ $(c) \qquad \begin{cases} \frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0 \end{cases} & \lim \begin{cases} \frac{\cos x}{\cos y} & -\frac{\pi}{3} & \cos y = 0 \end{cases} & \lim \begin{cases} \frac{\cos x}{\sin y} & -\frac{\pi}{3} & \cos y = 0 \end{cases} \end{cases} & \lim \begin{cases} \frac{\cos x}{\sin y} & -\frac{\pi}{3} & \cos y = 0 \end{cases} & \lim \begin{cases} \frac{\cos x}{\sin y} & -\frac{\pi}{3} & \cos y = -\frac{\pi}{3} & \cos y = 0.5 \end{cases} & \lim \begin{cases} \frac{\cos x}{2} & -\frac{\pi}{3} & \cos y = -\frac{\pi}{3} & \cos y = 0.5 \end{cases} & \lim \begin{cases} \frac{\cos x}{2} & -\frac{\pi}{3} & \cos y = -\frac{\pi}{3} & \cos y = 0.5 \end{cases} & \lim \begin{cases} \frac{\cos x}{2} & -\frac{\pi}{3} & \cos y = -\frac{\pi}{$	5. (a)	$\sin x + \cos y = 0.5 \qquad (eqn *)$		
(b) $\frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0$ $\frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0$ $\frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0$ $\frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0$ $\frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0$ $\frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0$ $\frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0$ $\frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0$ $\frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0$ $\frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0$ $\frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{dx} = 0 \Rightarrow \cos x = 0$ $\frac{dy}{dx} = 0 \Rightarrow \cot x = 0$ $\frac{dx}{dx} = 0 \Rightarrow \cot x = 0$		$\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}\cancel{x}} \times\right\} \cos x - \sin y \frac{dy}{dx} = 0 \qquad (eqn \#)$	± •	M1
(b) $\frac{dy}{dx} = 0 \Rightarrow \frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0$ $\cot solve 'their numerator' = 0$ $\cot solve 'the$		$\frac{dy}{dx} = \frac{\cos x}{\sin y}$		A1 cso [2]
When $x = -\frac{\pi}{2}$, $\sin(-\frac{\pi}{2}) + \cos y = 0.5$ When $x = \frac{\pi}{2}$, $\sin(\frac{\pi}{2}) + \cos y = 0.5$ Substitutes either their $x = \frac{\pi}{2}$ or $x = -\frac{\pi}{2}$ into eqn * Solve the set of the se	(b)	$\frac{dy}{dx} = 0 \implies \frac{\cos x}{\sin y} = 0 \implies \cos x = 0$	to solve 'their numerator' = 0 or candidate sets $\frac{dy}{dx}$ = 0 in their (eqn #) and attempts to solve the	M1√
When $x = \frac{\pi}{2}$, $\sin(\frac{\pi}{2}) + \cos y = 0.5$ $x = \frac{\pi}{2}$ or $x = -\frac{\pi}{2}$ into eqn * $\Rightarrow \cos y = 1.5 \Rightarrow y \text{ has no solutions}$ $\Rightarrow \cos y = -0.5 \Rightarrow y = \frac{2\pi}{3} \text{ or } -\frac{2\pi}{3} \text{ or } \frac{120^{\circ}}{3} \text{ or } \frac{120^{\circ}}{3} \text{ or } \frac{-120^{\circ}}{3} \text{ or awrt } \frac{-2.09}{3} \text{ or awrt } \frac{2.09}{3}$ In specified range $(x, y) = (\frac{\pi}{2}, \frac{2\pi}{3})$ and $(\frac{\pi}{2}, -\frac{2\pi}{3})$ Do not award this mark if candidate states other coordinates inside the required range.		giving $X = -\frac{\pi}{2}$ or $X = \frac{\pi}{2}$		A1
$\Rightarrow \cos y = -0.5 \Rightarrow y = \frac{2\pi}{3} \text{ or } -\frac{2\pi}{3}$ or $\frac{-120^{\circ}}{3}$ or $\frac{-120^{\circ}}{3$		` <i>'</i>		M1
In specified range $(x, y) = \frac{\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)}{\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)}$ and $\frac{\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)}{\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)}$ and $\frac{\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)}{\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)}$ and $\frac{\pi}{2}$. A1 Do not award this mark if candidate states other coordinates inside the required range.		· · · · · · · · · · · · · · · · · · ·	-	A1
candidate states other coordinates inside the required range.		In specified range $(x, y) = (\frac{\pi}{2}, \frac{2\pi}{3})$ and $(\frac{\pi}{2}, -\frac{2\pi}{3})$	$\frac{\left(\frac{\pi}{2},\frac{2\pi}{3}\right)}{\left(\frac{\pi}{2},-\frac{2\pi}{3}\right)}$ and $\frac{\left(\frac{\pi}{2},-\frac{2\pi}{3}\right)}{\left(\frac{\pi}{2},\frac{\pi}{3}\right)}$	A1
coordinates inside the required range.				
			coordinates inside	
			the required range.	[5]
7 marks				7 marks

Question Number	Scheme		Ma	arks
6.	$y = 2^x = e^{x \ln 2}$			
	$\frac{dy}{dx} = ln 2.e^{xln 2}$	$\frac{dy}{dx} = ln 2.e^{xln 2}$	M1	
Way 1	Hence $\frac{dy}{dx} = \ln 2.(2^x) = 2^x \ln 2$ AG	2 ^x ln2 AG	A1	
Aliter (a) Way 2	$ln y = ln(2^x)$ leads to $ln y = x ln 2$ $\frac{1}{y} \frac{dy}{dx} = ln 2$	Takes logs of both sides, then uses the power law of logarithms and differentiates implicitly to give $\frac{1}{y} \frac{dy}{dx} = \ln 2$	M1	[2]
	Hence $\frac{dy}{dx} = y \ln 2 = 2^x \ln 2$ AG	2 ^x ln2 AG	A 1	cso [2]
(b)	$y = 2^{(x^2)}$ $\Rightarrow \frac{dy}{dx} = 2x. \ 2^{(x^2)}.ln 2$	$\begin{array}{c} \text{Ax } 2^{(x^2)} \\ \text{2x. } 2^{(x^2)}.\text{In 2} \\ \text{or 2x. y.ln2 if y is defined} \end{array}$	M1 A1	
	When $x = 2$, $\frac{dy}{dx} = 2(2)2^4 \ln 2$	Substitutes $x = 2$ into their $\frac{dy}{dx}$ which is of the form $\pm k 2^{(x^2)}$ or $Ax 2^{(x^2)}$	M1	
	$\frac{dy}{dx} = \frac{64 \ln 2}{} = 44.3614$	<u>64 ln 2</u> or awrt 44.4	A1	[4]
			6 m	arks

Question Number	Scheme		Marks
Aliter 6. (b)	$ln y = ln(2^{x^2})$ leads to $ln y = x^2 ln 2$		
Way 2	$\frac{1}{y}\frac{dy}{dx} = 2x.\ln 2$	$\frac{1}{y} \frac{dy}{dx} = Ax. \ln 2$ $\frac{1}{y} \frac{dy}{dx} = 2x. \ln 2$	M1 A1
	When $x = 2$, $\frac{dy}{dx} = 2(2)2^4 \ln 2$	Substitutes $x = 2$ into their $\frac{dy}{dx}$ which is of the form $\pm k 2^{(x^2)}$ or Ax $2^{(x^2)}$	M1
	$\frac{dy}{dx} = \frac{64 \ln 2}{} = 44.3614$	<u>64ln2</u> or awrt 44.4	A1
			[4]

Question Number	Scheme	Marks
	$\mathbf{a} = \overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \Rightarrow \overrightarrow{OA} = 3$ $\mathbf{b} = \overrightarrow{OB} = \mathbf{i} + \mathbf{j} - 4\mathbf{k} \Rightarrow \overrightarrow{OB} = \sqrt{18}$ $\overrightarrow{BC} = \pm (2\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \Rightarrow \overrightarrow{BC} = 3$ $\overrightarrow{AC} = \pm (\mathbf{i} + \mathbf{j} - 4\mathbf{k}) \Rightarrow \overrightarrow{AC} = \sqrt{18}$ $\mathbf{c} = \overrightarrow{OC} = 3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$ $\overrightarrow{OA} \bullet \overrightarrow{OB} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix} = 2 + 2 - 4 = 0 \text{or}$ $\overrightarrow{BO} \bullet \overrightarrow{BC} = \begin{pmatrix} -1 \\ -1 \\ 4 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = -2 - 2 + 4 = 0 \text{or}$ $\overrightarrow{An} \text{ attempt to take the dot product between either OA and OB}$ $\overrightarrow{OA} \text{ and AC}, \overrightarrow{AC} \text{ and BC}$ $\overrightarrow{OA} \text{ and AC}, \overrightarrow{AC} \text{ and BC}$ $\overrightarrow{OA} \text{ or OB and BC}$ $\overrightarrow{AC} \bullet \overrightarrow{BC} = \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = 2 + 2 - 4 = 0 \text{or}$ Showing the result is equal to zero.	B1 cao [1] M1 A1
	and therefore OA is perpendicular to OB and hence OACB is a rectangle. perpendicular and OACB is a rectangle	A1 cso
	Using distance formula to find either the correct height or width. Multiplying the rectangle's	M1
	Area = $3 \times \sqrt{18} = 3\sqrt{18} = 9\sqrt{2}$ Multiplying the rectangle's height by its width. exact value of	M1
	$3\sqrt{18}$, $9\sqrt{2}$, $\sqrt{162}$ or aef	A1
(2)	$\overrightarrow{OD} = \mathbf{d} = \frac{1}{2} (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$ $\frac{1}{2} (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$	[6]
(c)	$\overrightarrow{OD} = \mathbf{d} = \frac{1}{2} (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$ $\frac{1}{2} (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$	B1 [1]

Question Number	Scheme		Marks			
(d) Way 1						
way 1	$\cos D = (\pm) \frac{\begin{pmatrix} 0.5 \\ 0.5 \\ 2.5 \end{pmatrix} \bullet \begin{pmatrix} 1.5 \\ 1.5 \\ -1.5 \end{pmatrix}}{\frac{\sqrt{27}}{2} \cdot \frac{\sqrt{27}}{2}} = (\pm) \frac{\frac{3}{4} + \frac{3}{4} - \frac{15}{4}}{\frac{27}{4}} = (\pm) \frac{1}{3}$	Applies dot product formula on multiples of these vectors. <u>Correct ft.</u> <u>application of dot product formula.</u>	dM1			
	$D = \cos^{-1}\left(-\frac{1}{3}\right)$	Attempts to find the correct angle D rather than $180^{\circ} - D$.	ddM1√			
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]			
(d) Way 2	using dot product formula and direction vectors $d\overrightarrow{BA} = \pm (\mathbf{i} + \mathbf{j} + 5\mathbf{k}) \qquad \& d\overrightarrow{OC} = \pm (\mathbf{i} + \mathbf{j} - \mathbf{k})$	Identifies a set of two direction vectors Correct vectors ±	M1 A1			
way 2	$\cos D = (\pm) \frac{\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}}{\sqrt{3} \cdot \sqrt{27}} = (\pm) \frac{1+1-5}{\sqrt{3} \cdot \sqrt{27}} = (\pm) \frac{1}{3}$	Applies dot product formula on multiples of these vectors. <u>Correct ft.</u> <u>application of dot product formula.</u>	dM1			
	$D = \cos^{-1}\left(-\frac{1}{3}\right)$	Attempts to find the correct angle D rather than 180° – D.	ddM1√			
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]			

Question Number	Scheme		Marks			
Aliter	using dot product formula and similar triangles Identifies a set of two					
(d)	$d\overrightarrow{OA} = (2\mathbf{i} + 2\mathbf{j} + \mathbf{k})$ & $d\overrightarrow{OC} = (\mathbf{i} + \mathbf{j} - \mathbf{k})$	direction vectors Correct vectors	M1 A1			
Way 3	$\cos\left(\frac{1}{2}D\right) = \frac{\begin{pmatrix} 2\\2\\1 \end{pmatrix} \bullet \begin{pmatrix} 1\\1\\-1 \end{pmatrix}}{\sqrt{9} \cdot \sqrt{3}} = \frac{2+2-1}{\sqrt{9} \cdot \sqrt{3}} = \frac{1}{\sqrt{3}}$	Applies dot product formula on multiples of these vectors. <u>Correct ft.</u> <u>application of dot product formula.</u>	dM1			
	$D = 2 \cos^{-1} \left(\frac{1}{\sqrt{3}} \right)$	Attempts to find the correct angle D by doubling their angle for $\frac{1}{2}D$.	ddM1√			
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]			
Aliter (d)	using cosine rule $\overrightarrow{DA} = \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{5}{2}\mathbf{k} , \overrightarrow{DC} = \frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} - \frac{3}{2}\mathbf{k} , \overrightarrow{AC} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$					
Way 4	$\left \overrightarrow{DA} \right = \frac{\sqrt{27}}{2} , \left \overrightarrow{DC} \right = \frac{\sqrt{27}}{2} , \left \overrightarrow{AC} \right = \sqrt{18}$	Attempts to find all the lengths of all three edges of \triangle ADC All Correct	M1			
	$\cos D = \frac{\left(\frac{\sqrt{27}}{2}\right)^{2} + \left(\frac{\sqrt{27}}{2}\right)^{2} - \left(\sqrt{18}\right)^{2}}{2\left(\frac{\sqrt{27}}{2}\right)\left(\frac{\sqrt{27}}{2}\right)} = -\frac{1}{3}$	Using the cosine rule formula with correct 'subtraction'. Correct ft application of the cosine rule formula	dM1			
	$D = \cos^{-1}\left(-\frac{1}{3}\right)$	Attempts to find the correct angle D rather than 180° – D.	ddM1√			
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]			

Question Number	Scheme		Marks			
Aliter (d) Way 5	using trigonometry on a right angled triangle $\overrightarrow{DA} = \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{5}{2}\mathbf{k} \overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \overrightarrow{AC} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$					
way 3	Let X be the midpoint of AC $\left \overrightarrow{DA} \right = \frac{\sqrt{27}}{2}$, $\left \overrightarrow{DX} \right = \frac{1}{2} \left \overrightarrow{OA} \right = \frac{3}{2}$, $\left \overrightarrow{AX} \right = \frac{1}{2} \left \overrightarrow{AC} \right = \frac{1}{2} \sqrt{18}$	Attempts to find two out of the three lengths in Δ ADX	M1			
	(hypotenuse), (adjacent) , (opposite)	Any two correct	A1			
	$\sin(\frac{1}{2}D) = \frac{\frac{\sqrt{18}}{2}}{\frac{\sqrt{27}}{2}}$, $\cos(\frac{1}{2}D) = \frac{\frac{3}{2}}{\frac{\sqrt{27}}{2}}$ or $\tan(\frac{1}{2}D) = \frac{\frac{\sqrt{18}}{2}}{\frac{3}{2}}$	Uses correct sohcahtoa to find ½D	dM1			
	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$	Correct ft application of sohcahtoa	A1√			
	eg. D = 2 tan ⁻¹ $\left(\frac{\sqrt{18}}{\frac{2}{3}}\right)$	Attempts to find the correct angle D by doubling their angle for $\frac{1}{2}D$.	ddM1√			
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]			
Aliter	using trigonometry on a right angled similar triangle OAC					
(d) Way 6	$\overrightarrow{OC} = 3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$ $\overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ $\overrightarrow{AC} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$ $ \overrightarrow{OC} = \sqrt{27}$, $ \overrightarrow{OA} = 3$, $ \overrightarrow{AC} = \sqrt{18}$ (hypotenuse), (adjacent), (opposite)	Attempts to find two out of the three lengths in ΔOAC	M1			
		Any two correct	A1			
	$\sin(\frac{1}{2}D) = \frac{\sqrt{18}}{\sqrt{27}}$, $\cos(\frac{1}{2}D) = \frac{3}{\sqrt{27}}$ or $\tan(\frac{1}{2}D) = \frac{\sqrt{18}}{3}$	Uses correct sohcahtoa to find ½D	dM1			
		Correct ft application of sohcahtoa	A1√			
	eg. $D = 2 \tan^{-1} \left(\frac{\sqrt{18}}{3} \right)$	Attempts to find the correct angle D by doubling their angle for $\frac{1}{2}D$.	ddM1√			
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]			

Question Number	Scheme		Marks
Aliter			
7. (b) (i)	$\mathbf{c} = \overrightarrow{OC} = \pm \left(3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k} \right)$		
	$\overline{AB} = \pm (-\mathbf{i} - \mathbf{j} - 5\mathbf{k})$		
Way 2	$\left \overrightarrow{OC} \right = \sqrt{(3)^2 + (3)^2 + (-3)^2} = \sqrt{(1)^2 + (1)^2 + (-5)^2} = \left \overrightarrow{AB} \right $	A complete method of proving that the diagonals are equal.	M1
	As $ \overrightarrow{OC} = \overrightarrow{AB} = \sqrt{27}$	Correct result.	A1
	then the <u>diagonals are equal</u> , and OACB is a <u>rectangle</u> .	diagonals are equal and OACB is a rectangle	A1 cso [3]
	$\mathbf{a} = \overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \Rightarrow \left \overrightarrow{OA} \right = 3$		
	$\mathbf{b} = \overrightarrow{OB} = \mathbf{i} + \mathbf{j} - 4\mathbf{k} \Rightarrow \left \overrightarrow{OB} \right = \sqrt{18}$		
	$\overrightarrow{BC} = \pm (2\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \Rightarrow \overrightarrow{BC} = 3$		
	$\overrightarrow{AC} = \pm (\mathbf{i} + \mathbf{j} - 4\mathbf{k}) \Rightarrow \overrightarrow{AC} = \sqrt{18}$		
	$\mathbf{c} = \overrightarrow{OC} = \pm (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}) \Rightarrow \overrightarrow{OC} = \sqrt{27}$		
	$\overrightarrow{AB} = \pm (-\mathbf{i} - \mathbf{j} - 5\mathbf{k}) \Rightarrow \overrightarrow{AB} = \sqrt{27}$		
Aliter			
	$(OA)^2 + (AC)^2 = (OC)^2$		
7. (b) (i)	or $(BC)^2 + (OB)^2 = (OC)^2$ or equivalent		
	or $(OA)^2 + (OB)^2 = (AB)^2$		
Way 3	or $(BC)^2 + (AC)^2 = (AB)^2$		
, ay c	$\Rightarrow (3)^2 + (\sqrt{18})^2 = \left(\sqrt{27}\right)^2$	A complete method of proving that Pythagoras holds using their values.	M1
		Correct result	A1
	and therefore OA is <u>perpendicular</u> to OB or AC is <u>perpendicular</u> to BC and hence <u>OACB</u> is a rectangle.	perpendicular and OACB is a rectangle	A1 cso
			[3]
			14 marks

Question Number	Scheme					Marks		
8. (a)		11 -		_			_	
	X	0	1	2	3	4	5	
	y	e¹	e ²	$\mathrm{e}^{\sqrt{7}}$	$e^{\sqrt{10}}$	$e^{\sqrt{13}}$	e ⁴	
	or y	2.71828	7.38906	14.09403	23.62434	36.80197		
						Either $e^{\sqrt{7}}$, $e^{\sqrt{10}}$ and $e^{\sqrt{13}}$	
						or awrt 14	.1, 23.6 and 36.8	
							r e to the power	
							2.65, 3.16, 3.61	
					(01		ecimals and e's)	D1
							east two correct	B1
						F	All three correct	B1
								[2]
(b)							1 .	
()	1	(, , , ,		·		Outside	brackets $\frac{1}{2} \times 1$	B1;
ı	$1 \approx \frac{1}{2} \times 1$	$ (x) = 1 + 2(e^2)$	$+ e^{\sqrt{7}} + e^{\sqrt{10}}$	$+ e^{\sqrt{13}} + e^4$		For structu	ire of trapezium	_
ı							M1√	
ı	<u> </u>							
	1							A1
	$=\frac{1}{2}\times 2$	21.1352227	= 110.56	676113 = <u>11</u>	<u>10.6</u> (4sf)		<u>110.6</u>	cao
								[3]
ı								ری

Beware: In part (b) candidates can add up the individual trapezia:

$$(b) I \approx \tfrac{1}{2}.1 \Big(\underline{e^1 + e^2} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^2 + e^{\sqrt{7}}} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{7}} + e^{\sqrt{10}}} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{10}} + e^{\sqrt{13}}} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{13}} + e^4} \Big)$$

Question Number	Scheme		Marks
(a)	$t = (3x+1)^{\frac{1}{2}} \implies \frac{dt}{dx} = \frac{1}{2} .3.(3x+1)^{-\frac{1}{2}}$	$A(3x+1)^{-\frac{1}{2}} \text{ or } t\frac{dt}{dx} = A$	M1
(c)	or $t^2 = 3x + 1 \Rightarrow 2t \frac{dt}{dx} = 3$	$\frac{3}{2}(3x+1)^{-\frac{1}{2}}$ or $2t\frac{dt}{dx}=3$	A1
	so $\frac{dt}{dx} = \frac{3}{2.(3x+1)^{\frac{1}{2}}} = \frac{3}{2t} \implies \frac{dx}{dt} = \frac{2t}{3}$	Candidate obtains either $\frac{dt}{dx}$ or $\frac{dx}{dt}$ in terms of t	
	$\therefore I = \int e^{\sqrt{(3x+1)}} dx = \int e^t \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$	and moves on to substitute this into I to convert an integral wrt x to an integral wrt t.	dM1
	$\therefore I = \int \frac{2}{3} t e^{t} dt$	$\frac{\int \frac{2}{3} t e^{t}}{}$	A1
	change limits: when $x = 0$, $t = 1$ & when $x = 5$, $t = 4$	changes limits $x \to t$ so that $0 \to 1$ and $5 \to 4$	B1
	Hence $I = \int_{1}^{4} \frac{2}{3} te^{t} dt$; where $a = 1$, $b = 4$, $k = \frac{2}{3}$		[5]
(d)	$\begin{cases} u = t & \Rightarrow & \frac{du}{dt} = 1 \\ \frac{dv}{dt} = e^t & \Rightarrow & v = e^t \end{cases}$	Let k be any constant for the first three marks of this part.	
	$k \int t e^t dt = k \left(t e^t - \int e^t .1 dt \right)$	Use of 'integration by parts' formula in the correct direction. Correct expression with a constant factor k.	M1 A1
	$= k \Big(\underline{t e^t - e^t}\Big) + c$	Correct integration with/without a constant factor k	A1
	$\therefore \int_{1}^{4} \frac{2}{3} t e^{t} dt = \frac{2}{3} \left\{ \left(4e^{4} - e^{4} \right) - \left(e^{1} - e^{1} \right) \right\}$	Substitutes their changed limits into the integrand and subtracts oe.	dM1 oe
	$=\frac{2}{3}(3e^4)=\underline{2e^4}=109.1963$	either 2e ⁴ or awrt 109.2	A1 [5] 15 marks

- Note: dM1 denotes a method mark which is dependent upon the award of the previous method mark
- ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.